skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pope, Adrian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We construct accurate emulators for the projected and redshift space galaxy correlation functions and excess surface density as measured by galaxy–galaxy lensing, based on halo occupation distribution modeling. Using the complete Mira-Titan suite of 111N-body simulations, our emulators vary over eight cosmological parameters and include the effects of neutrino mass and dynamical dark energy. We demonstrate that our emulators are sufficiently accurate for the analysis of the Baryon Oscillation Spectroscopic Survey DR12 CMASS galaxy sample over the range 0.5 ≤r≤ 50h−1Mpc. Furthermore, we show that our emulators are capable of recovering unbiased cosmological constraints from realistic mock catalogs over the same range. Our mock catalog tests show the efficacy of combining small-scale galaxy–galaxy lensing with redshift space clustering and that we can constrain the growth rate andσ8to 7% and 4.5%, respectively, for a CMASS-like sample using only the measurements covered by our emulator. With the inclusion of a cosmic microwave background prior onH0, this reduces to a 2% measurement of the growth rate. 
    more » « less
  2. Building on the base of the existing telescopes of the Event Horizon Telescope (EHT) and ALMA, the next-generation EHT (ngEHT) aspires to deploy ∼10 more stations. The ngEHT targets an angular resolution of ∼15 microarcseconds. This resolution is achieved using Very Long Baseline Interferometry (VLBI) at the shortest radio wavelengths ∼1 mm. The Submillimeter Array (SMA) is both a standalone radio interferometer and a station of the EHT and will conduct observations together with the new ngEHT stations. The future EHT + ngEHT array requires a dedicated correlator to process massive amounts of data. The current correlator-beamformer (CBF) of the SMA would also benefit from an upgrade, to expand the SMA’s bandwidth and also match the EHT + ngEHT observations. The two correlators share the same basic architecture, so that the development time can be reduced using common technology for both applications. This paper explores the prospects of using Tensor Core Graphics Processing Units (TC GPU) as the primary digital signal processing (DSP) engine. This paper describes the architecture, aspects of the detailed design, and approaches to performance optimization of a CBF using the “FX” approach. We describe some of the benefits and challenges of the TC GPU approach. 
    more » « less